

Potential for Pyrolysis in the Marine market

WBA Webinar: Pyrolysis Oil markets and global supply

Sjors Geraedts – Head of Business Development

Our GoodFuels DNA

Advanced sustainable fuel is the best option for reducing the carbon footprint of the following transport segments:

Aviation

Shipping

Heavy road & Rail

NGO's support the fact that for these sectors, **sustainable biofuels** are the best option for **reducing the carbon footprint** significantly

The GoodNRG Group

Downstream we focus on market development & sales, upstream our focus is on product development

Marine biofuel market

European GHG targets and low-carbon fuel requirement

To meet EU targets, Europe will need 60 Mtonne of low-carbon marine fuel in 2050

Inputs

- Base case scenario: Emission factors fossil fuel mix developing according to IMO low-LNG scenario
- **Biofuels combustion emissions**: 0 gCO₂/MJ, (Source: Kyoto protocol)
- European emissions share: 19% 2010 -> 13% 2050 (Source EU/IMO projection)
- EU target: 50% GHG reduction vs 2005 levels (Source: The Commission's 2011 White Paper on transport)

Global vs Local drivers for marine biofuel market

& Good Fuels

Whilst global regulation is slow to be developed, some markets have already introduced favourable regulations enabling the introduction of low-carbon marine fuels

Global

IMO

- Efficiency measures: EEDI & SEEMP
- IMO's definitive GHG strategy in 2023

EU

- MRV regulation starting in 2018
- Potentially including shipping in EU-ETS in 2021

Local

RED extension

Inclusion of shipping in RED scheme

Procurement: Waterworks

In tenders for government contracts in waterworks CO₂ reduction is given a value

Ship rating schemes

Sweden has adopted the Clean Shipping Index as basis for their fairway and port duties

New ferry contracts have to reduce their carbon footprint by 25%

Potential for Pyrolysis

Technology development

Each feedstock requires specific conversion and upgrading, leading to many possible pathways. The marine market offers a lower entrance quality option.

Case study: Lignin pyrolysis and upgrading

The marine market shows significant advantages over other markets for bio-crude valorisation

3 routes for pyrolysis products

- 1. Direct blending of bio-crude into marine fuel
- Partial upgrading to marine quality
- 3. Full upgrading to road/aviation quality

Advantages marine vs road/aviation

- Sower H₂ requirement for upgrading
- Lower GHG footprint of end-product
- Higher yield
- Lower CAPEX and OPEX

Case study for Biobased Delta Zuid-Holland

- Fast Pyrolysis of lignin fraction from a biorefinery running on woodchips
- Location: Port of Rotterdam
- Natural gas used to replace lignin energy
- Bio-oil upgrading options:
 - 1. No upgrading
 - 2. Mild hydrotreatment with variable deoxygenation -> Marine fuel
 - 3. Full hydrotreatment and hydrocracking -> Automotive fuel

Results: Lignin pyrolysis and upgrading

🛞 GoodFuels

Minimizing upgrading requirement leads to optimal financial and environmental performance

			•
SC	en	ar	ios

Scenario	Hydro- treatment	Hydro- cracking	Residual oxygen %
1	No	No	30%
2	Mild	No	30%
3	Mild	No	20%
4	Mild	No	10%
5	Mild	No	0%
6	Full	Yes	0%

Scenario

Lessons learned

Minimal upgrading leads to optimal techno-economic and environmental performance

Conclusions

- Shipping needs enormous amounts of low-carbon fuels for a sustainable future
- Although global regulations are slow to be implemented, local conditions are already creating markets for low-carbon marine fuels
- Pyrolysis fuels for marine application show significant advantages over other markets, both economically and environmentally
- To develop these fuels, Cooperation with relevant fuel standard setting bodies is needed (ISO/CIMAC)

Let's start!

GoodFuels is part of the Pyrolysis cluster Moerdijk

EC-funded project with 4 pilot plants, 8 feedstock options, creating 30 value chains

Contact

Sjors Geraedts – Head of business development

sjors@goodfuels.com +31 6 46 76 6578

