TECHNOLOGIES FOR EFFICIENT CONVERSION OF BIOMASS TO HEAT AND POWER

A BIOMASS BOILER MANUFACTURER'S PERSPECTIVE

BY LARS JUSTSEN, CSO 🛵

JUSSESSE Since 1959 World Bioenergy Association, June 2023 www.justsen.dk

AGENDA

- ABOUT US
 - KEY FACTS
 - MISSION STATEMENT
 - ENVIROMENT AND CORPORATE SOCIAL RESPONSIBILITY
 - MEMBERSHIPS AND INDUSTRY NETWORKS
- SOLUTIONS
 - DESIGN FUEL AND TECHNOLOGY APPLICATIONS
 - BOILER TYPES
 - BOILER SYSTEM COMPONENT WATER-COOLED GRATES
 - RESEARCH AND DEVELOPMENT MAIN INNOVATIONS
- AGRICULTURAL RESIDUES
 - KEY CHARACTERISTICS
 - CHALLENGES
 - SOLUTIONS
- SIMPLIFIED STEAM RANKINE CYCLE
- WATER / STEAM MOLLIER DIAGRAM
- PERMISSIBLE INLET STEAM CONDITIONS (EXAMPLE)
- WATER INJECTION
- STEAM RANKINE CYCLE CALCULATION (EXAMPLE)
- CHP SUPERHEATED BOILER DRAWING (EXAMPLE)
- CHP LATVIA, RIGA ENERGIJA
- CHP SLOVAKIA, TERMONOVA
- CONTACT DETAILS

JUSSEEN® Since 1959 World Bioenergy Association, June 2023 www.justsen.dk

Key Facts

- Original equipment manufacturer (OEM) based in Denmark
- Designing and manufacturing advanced boiler systems for all types of biomass
- All heat transmission media (including superheated steam for CHP)
- Steam boiler output range 0.5 t/h to 50 t/h
- Hot water boiler output range 0.3 MW to 20 MW
- Key system element Justsen water-cooled grates
- Over 60 years of experience (since 1959)
- Delivered around 3,000 boiler units
- Own electrical engineering division "Justsen Elektro"
- Three subsidiaries: Justsen Pacific Ltd. (Australia), Justsen Eesti OÜ (Estonia) and Euro Therm 2019 A/S (Denmark)

JUSISEN®

About us

Mission Statement

- Our vision is to be a highly specialized world leader in heating technology and maximum energy utilization from biomass.
- Our mission is to provide customized solutions of advanced biomass plants which last longer, require a minimum of maintenance, and offer a faster return on investment for our customers.
- Our core values are: environmental awareness, continuous development and innovation, loyalty and efficiency.

About us

Environment and Corporate Social Responsibility

We recognize that managing environmental impact is an integral part of our business activities. The key principles to guide our work activities:

- to comply with the relevant environmental legislation
- to identify and manage our significant environmental impacts •
- to take action to prevent pollution, which may occur as a result of our operations •
- to use renewable energy in our business activities and encourage our suppliers to do so • too
- to monitor environmental performance and set new targets

We use renewable heat and power in the headquarters and production facility in Brabrand.

The company's website is made CO_2 neutral to neutralize the carbon emissions from both the website and the users of the website.

About us

Memberships and Industry Networks

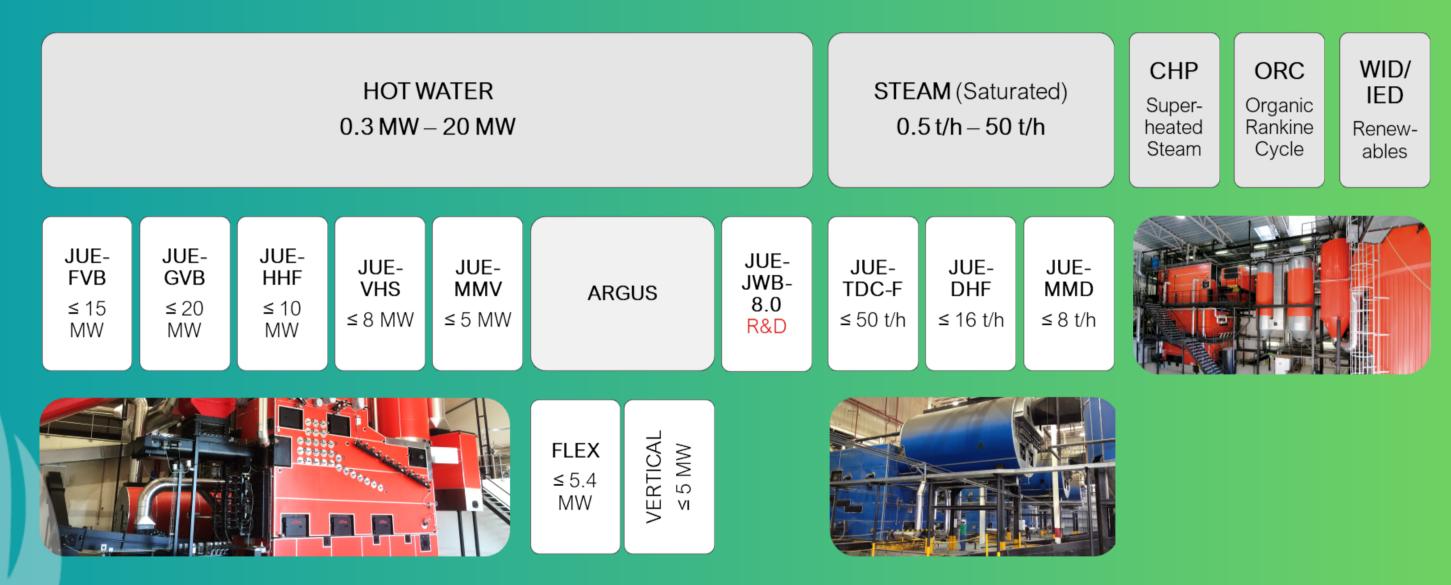
Justsen has joined several networks to actively participate and contribute to the bioenergy sector:

- Word Bioenergy Association
- Energy Supply DK
- State of Green Denmark
- AcuComm (Business Intelligence)

ENERGY SUPPLY

Design Fuel and Technology Applications

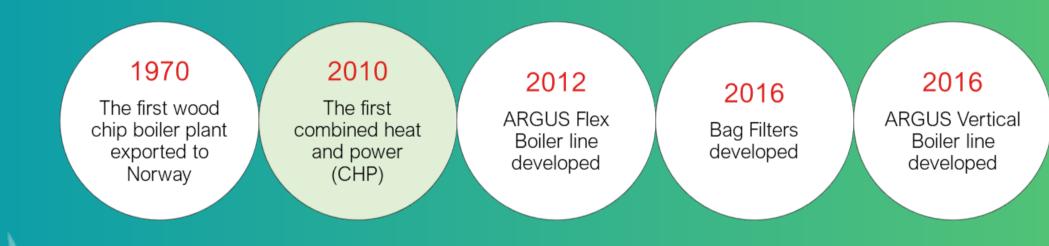
Fuel Types:


- Wood based biomass
- Agricultural biomass (e.g., straw)
- Waste wood and treated wood (Grade A-D, RDF)
- Various peat, spent coffee grounds and biomass mix with sludge/waste from coconut industry and African palm

Applications:

- District heating and heat & power
- Process industries (textile, food, furniture etc.)
- Woodworking industries and sawmills
- Agriculture and farming (greenhouses, poultry)
- Housing estates

Boiler Types


Boiler System Component: Water-cooled Grates

- Low maintenance costs
- Minimizing radiation loss
- Self cleaning grate
- Controlled combustion and minimized emissions
- Quick reaction to changes in fuel load
- Handling large range of biofuels with varying calorific values
- Very long life expectancy
- Easy replacement of worn out grate bars.

Reseach and Development: Main Innovations

2019/20

WtE (waste-toenergy) concept boilers . developed

2020/21

JUE-JWB-8.0 high pressure hot water boiler

JUSISEN®

Agricultural Residues - Characteristics

Justsen Energiteknik A/S

Lars Justsen, CSO

WBA Webinar: Agricultural residues as key ingredient for a bioenergy future – Latest technological developments

December 9, 2020

From WBA Webinar December 9, 2020

Examples of Agricultural Residues: Some Key Characteristics

Fuel Type:	Coniferous and broad-leaf wood (for comparative purposes)	Straw from wheat, rye, barley	Crude olive cake	Rice husk	
Gross calorific value:	18.0 – 22.7 MJ/kg dry	16.6 – 20.1 MJ/kg dry	19.4 – 21.4 MJ/kg dry	14.7 – 16.6 MJ/kg dry	
Water:	8 – 60% as received	8 – 25% as received	20-50% as received	5-25% as received	
Ash:	0.1 – 1.0% dry	2 – 10% dry	approx. 10% dry	13 — 23% dry	
Net calorific value:	5.73 – 20.7 MJ/kg as received	11.8 – 18.3 MJ/kg as received	8.48 – 16.6 MJ/kg as received	10.4 – 15.7 MJ/kg as received	
Carbon (C):	47 — 54% dry	41 — 50% dry	approx. 50% dry	38 — 43% dry	
Hydrogen (H):	5.6 – 7.0% dry	5.4 – 6.5% dry	approx. 6.9% dry	4.3 — 5.1% dry	
Oxygen (O):	40 – 45% dry	36 — 45% dry	approx. 30% dry	35 — 47% dry	
Sulphur (S):	0.01 – 0.05% dry	0.05 – 0.20% dry	approx. 0.20% dry	0.02 – 0.10% dry	
Nitrogen (N):	0.1 – 0.5% dry	0.2 – 1.5% dry	approx. 1.5% dry	0.1 – 0.8% dry	
Chlorine (Cl):	0.01 – 0.03% dry	0.1 – 1.2% dry	approx. 0.2% dry	0.03 – 0.3% dry	
Potassium (K):	0.02 – 0.15% dry	0.2 – 2.6% dry	0.6 – 1.6% dry	0.28 – 0.43% dry	
Ash shrinkage starting temperature (SST):	approx. 1,140 °C	approx. 860 °C	Low (limited data)	Low (limited data)	
Physical properties:	Chips, strips, sawdust, etc.	Bales (Hesston, mini big, etc.)	Sticky	Low density, high silica content	

Source: ISO 17225-1:2014(E) except for water content, ash melting behavior and physical properties.

JUSISEN®

Agricultural residues webinar 09.12.2020

Agricultural Residues - Challenges

JUSISEN®

Examples of Agricultural Residues: Challenges

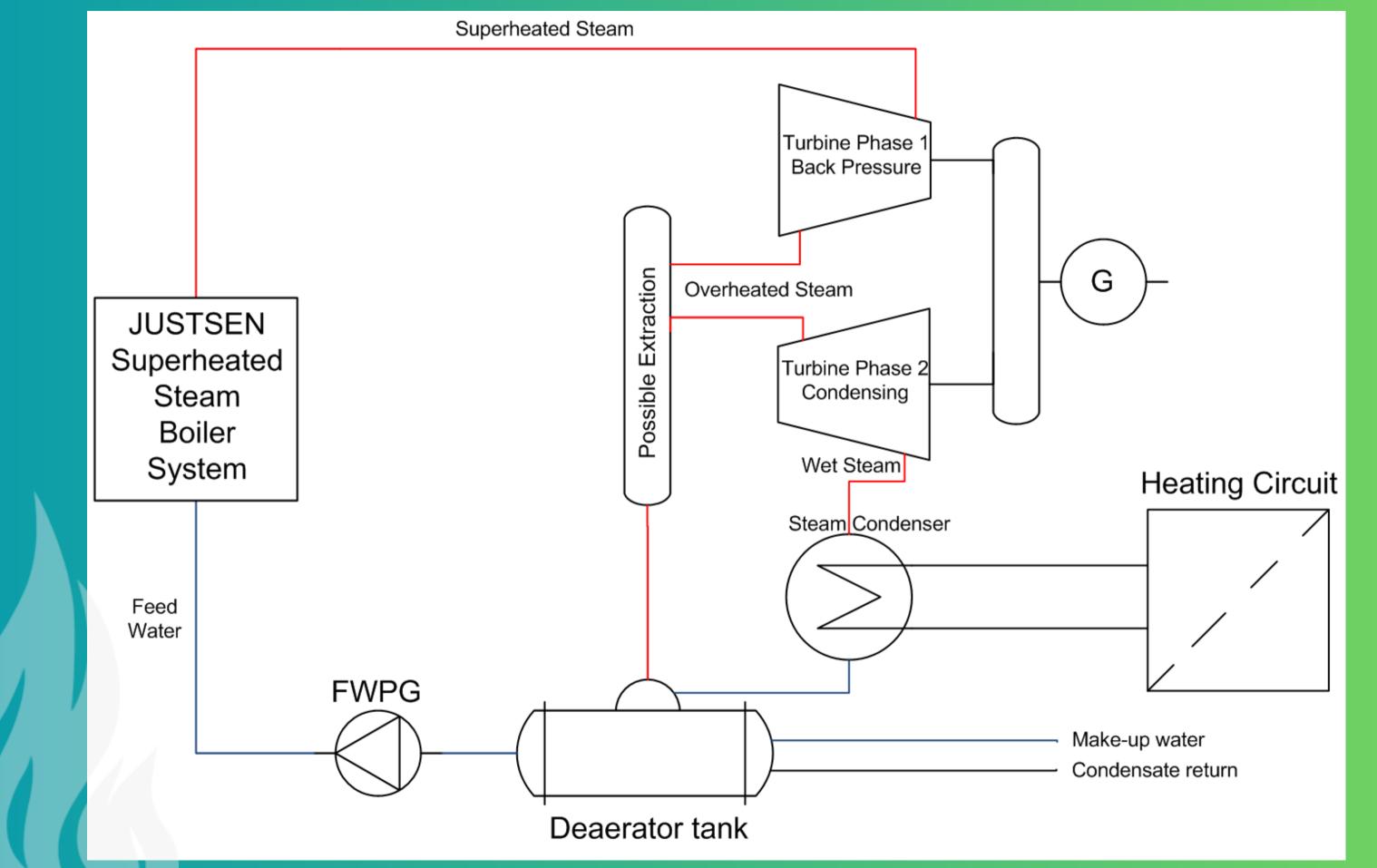
Fuel Type:	Coniferous and broad-leaf wood (for comparative purposes)	Straw from wheat, rye, barley	Crude olive cake	Rice husk
Water:	Large range to cover for combustion chamber & low temperature corrosion			
Ash:				Large quantities to handle
Oxygen (O):			Low volatility ⇔ long burn out time on grate	
Sulphur (S):		SO _x emissions & corrosion issues		
Nitrogen (N):		NO _x and N ₂ O emissions		
Chlorine (Cl):		HCI and Dioxin emissions & corrosion issues		
P <mark>otassium (K):</mark>		Lowering of ash melting temperatures (K_2O) \Rightarrow fouling		
Ash shrinkage starting temperature (SST):		Slagging and clinkering on grate & fouling		
Physical properties:		De-baling into uniform fuel	Build-up in conveyors	Abrasive fly ash
Source: ISO 17225-1:2014(E) except for water content, ash melting behavior and physical properties.				

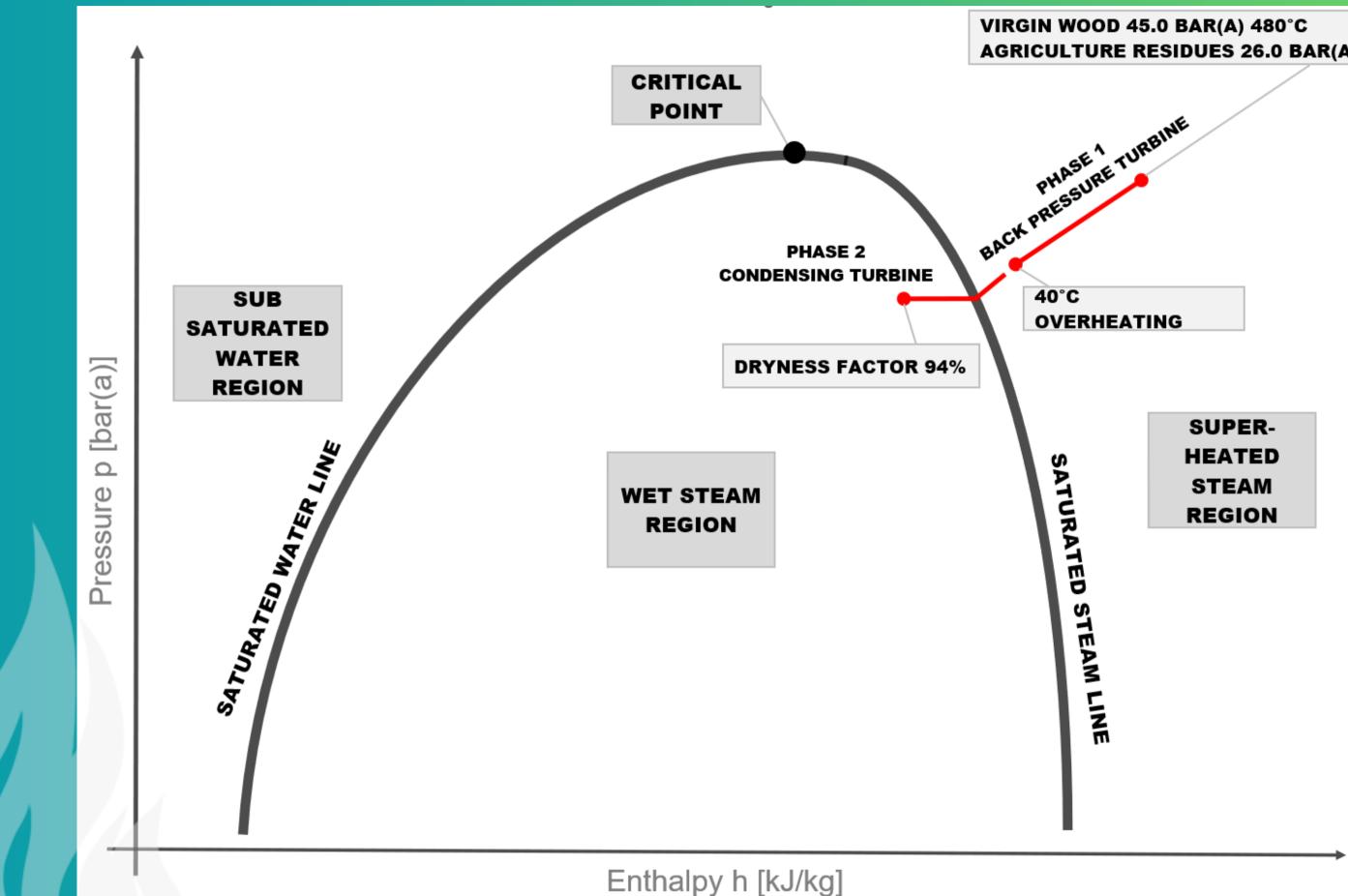
Agricultural residues webinar 09.12.2020

Agricultural Residues - Solutions

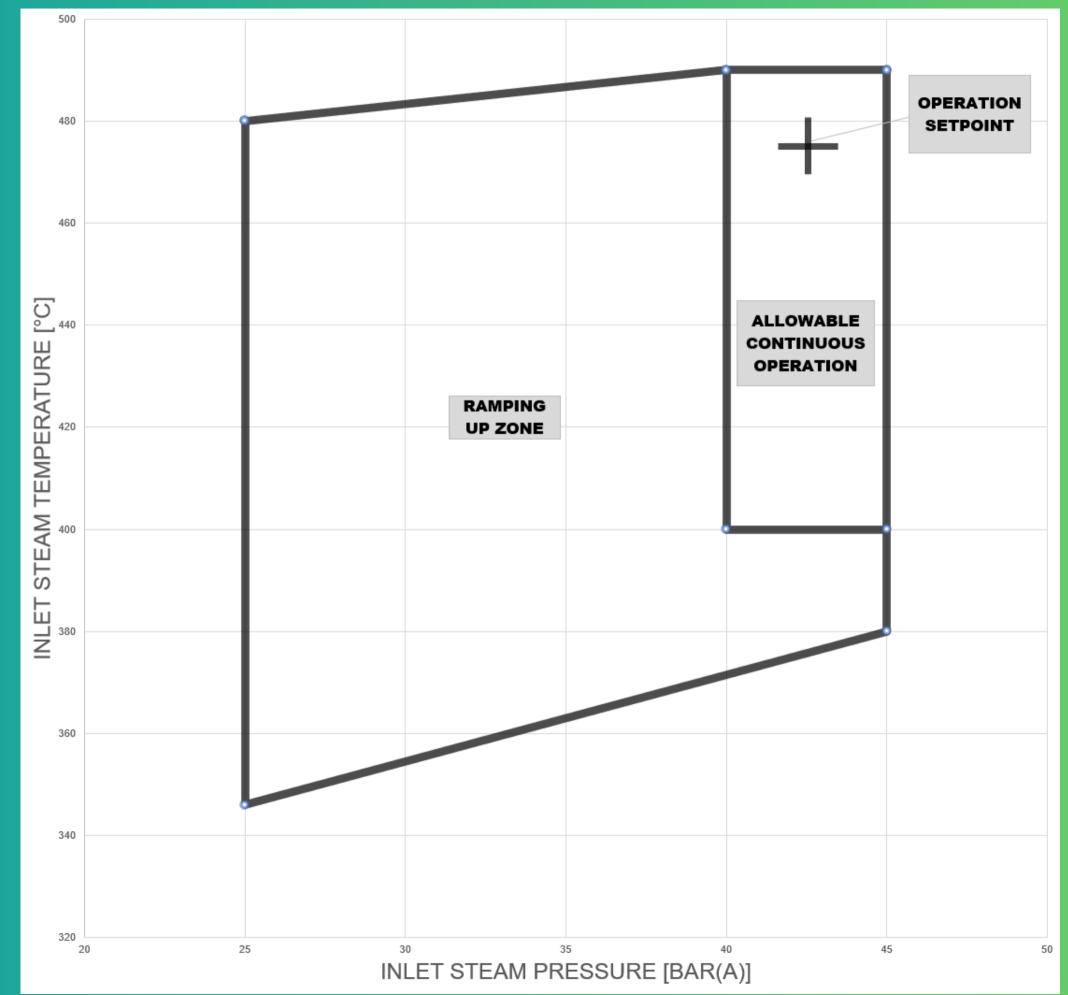
JUSISEN®

Examples of Agricultural Residues: Solutions

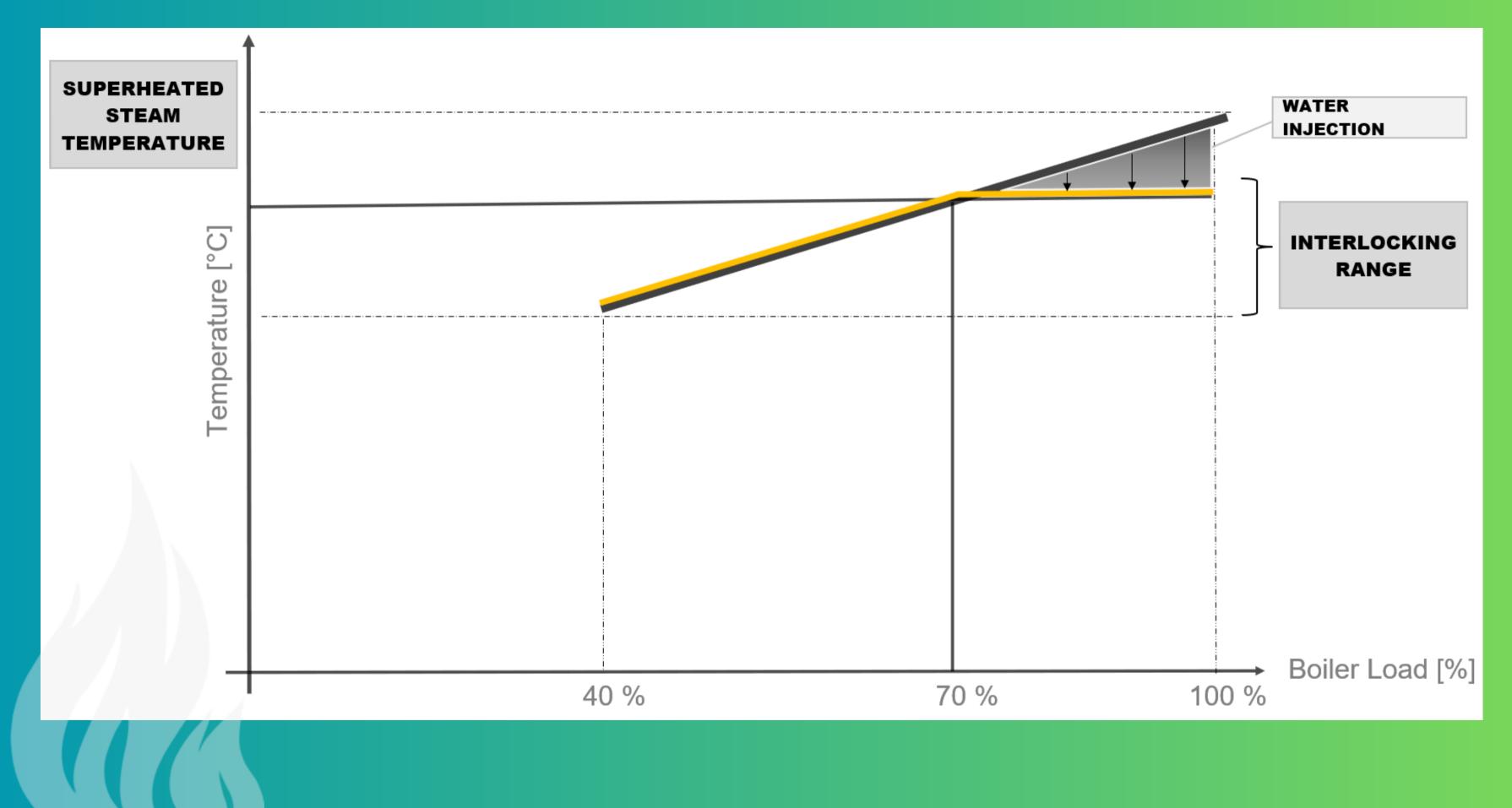

Fuel Type:	Coniferous and broad-leaf wood (for comparative purposes)	Straw from wheat, rye, barley	Crude olive cake	Rice husk
Water:	Varying flue gas recirculation			
	(cooling) and combustion air pre-heating			
Ash:				Adequately sized ash
				handling in <u>Hardox</u> steel
Oxygen (O):			High length to width grate	
			ratio	
		Emissions: lime injection		
Sulphur (S):		Corrosion: adequately high v	water side temperatures and	
		high gra	de steel	
Nitrogon (NI):		Good boiler design, extreme staging of combustion air &		
Nitrogen (N):		Selective Non-Catalytic/Catalytic Reduction Systems		
Chloring (CI):		Good boiler design without		
Chlorine (Cl):		"shelves" (Dioxin prevention)		
Detective (I/)		Large combustion chambers l	owering flue gas temperatures	
Potassium (K):		before first boiler tube pass		
Ash shrinkage starting temperature (SST):		Water cooling of grate system and high pressure drop over grate		
Physical properties:		Good design	Good design	Easily replaceable wear and tear inserts
Source: ISO 17225-1:2014(E) except for water content, ash melting behavior and physical properties.				


Agricultural residues webinar 09.12.2020

Simplified Steam Rankine Cycle


Water / Steam - Mollier Diagram

AGRICULTURE RESIDUES 26.0 BAR(A) 360°C


Permissible inlet steam conditions (example)

Water Injection

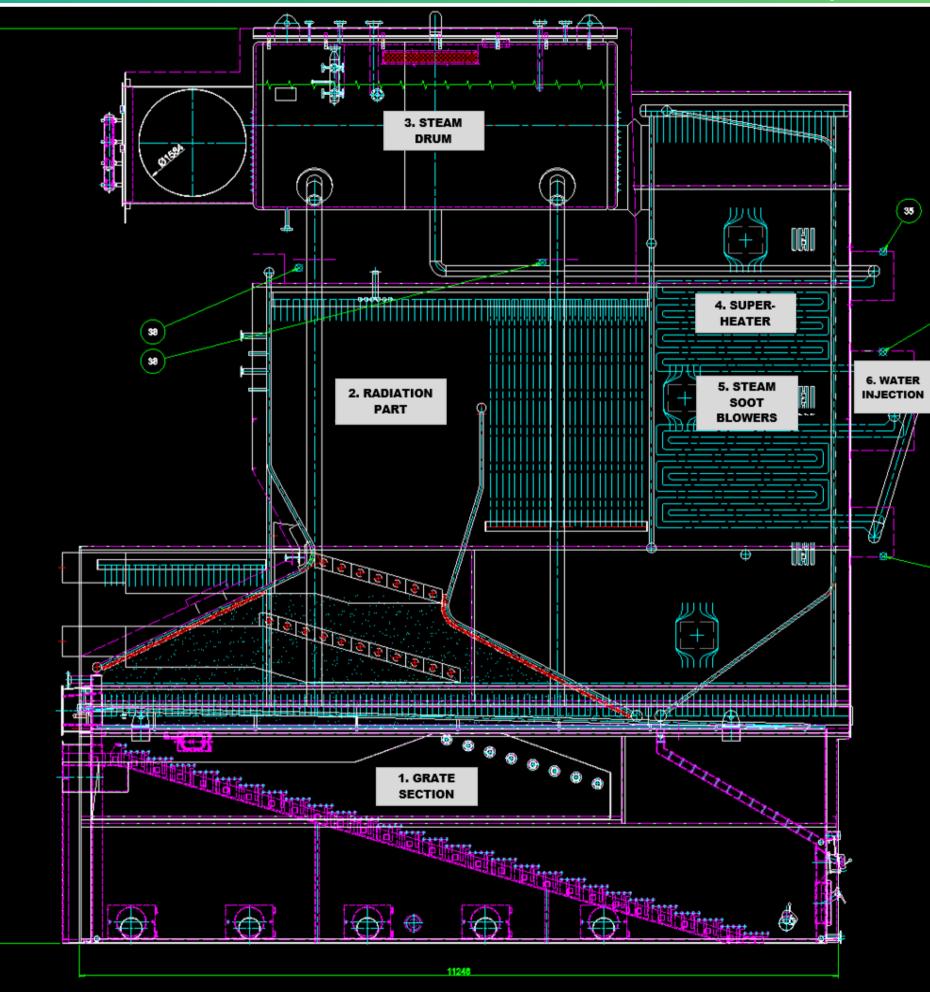
Steam Rankine Cycle Calculations (example)

Txxxx XX - Preliminary Steam Rankine Cycle Calculations

Justsen Energiteknik A/S

Lars Justsen

04.10.2022		Turbine stage 1 (back pre	ssure)		Turbine st
	INLET TURBINE	OUTLET TURBINE	Delta over turbine	INLET TURBINE	OUTLET TURBI
Boiler output	20000 kg/h	20000 kg/h		19000 kg/h	1900
Specific enthalpy, steam	3332,04 kJ/kg	2818,10 kJ/kg		2818,71 kJ/kg	2548,
equal to	0,925564 kWh/kg	0,782803 kWh/kg		0,782973 kWh/kg	0,70786
Steam capacity, total	18.511 kW	15.656 kW	2.855 <u>kW</u> 17,8%	14.876 kW	13.44
Feed water temperature	105,0 °C			105 °C	
Specific enthalpy, water	442,560 kJ/kg			440,215 kJ/kg	
equal to	0,122933 kWh/kg			0,122282 kWh/kg	
Water capacity, feed water	2.459 kW	_		2.323 kW	_
Boiler capacity	16.053 kW	_		12.553 kW	_
					Drynes
Working pressure	39,0 bar(a)	4,0 bar(a)		3,9 bar(a)	1,22
Saturation temperature	248,9 °C	143,6 ⁰ C		142,7 °C	105
Superheated temperature	450,0 ⁰C	180,0 °C		180,0 °C	105
Degrees superheating	201,1 °C	36,4 ⁰ C		37,3 ⁰C	0


JUSISEN® Since 1959

stag	ge 2 (cond	ensing)		
BINE		Delta over turbine	Delta over stage 1+2	
000	kg/h			
8,33	kJ/kg			
867	kWh/kg			
449	kW	<u> </u>	4.282 kW	<u>26,7</u> %
		Estimated refrigeration turbine 1+2	150 kW ^e	0,9%
		Estimated refrigeration generator	80 kW ^e	0,5%
		Estimated power to terminals	4.052 kW ^e	25,2%
		Hot water (condenser cooling)	11.770 kW th	73,3%
ess:	94,0%	Forward flow temperature	90 °C	
,210	bar(a)	Return flow temperature	70 °C	
05,0	٥C			
05,0	٥C			
0,0	٥C			

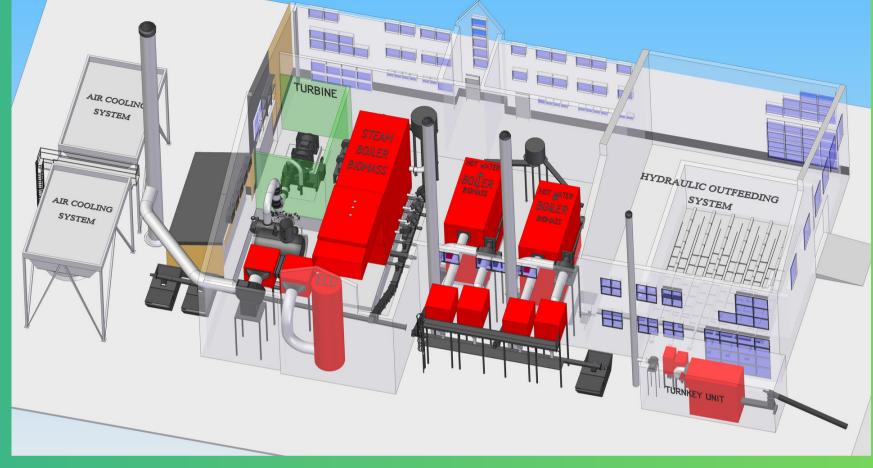
Combined Heat and Power (CHP) Biomass Boiler (example)

MAIN BOILER COMPONENTS

- 1. WATER-COOLED GRATE SYSTEM
- 2. RADIATION PART
- **3. STEAM DRUM**
- **4. SUPERHEATER**
- **5. STEAM SOOT BLOWERS**
- 6. WATER INJECTION

JUSISEN®

Combined Heat and Power (CHP) Biomass Boiler (Riga -Latvia) JUSISEN®



24.0 MW Boiler Output // 4.0 MWe Output

Combined Heat and Power (CHP) Plant - Slovakia

Contact Details

• ARHITEH

- PERNAVAS IELA 43
- LV-1009 RIGA LATVIA
- ATT. ANDREJS CHINSNOVICH MAIL: ACS@APOLLO.IV
- ENGINEERING COMPANY A.O. SPECIALIZED IN COMPLETE STEAM RANKINE CYCLES BASED ON BIOMASS FUELED BOILERS

• DT ENERGIETECH

- NA RYBNIK 974
- SK-013 01 TEPLICKA NAD VÁHOM SLOVAKIA
- ATT. RADO KNAZUR MAIL: R.KNAZUR@DTENERGIETECH.EU
- GENERAL CONTRACTOR, A.O. SPECIALIZED IN COMPLETE STEAM RANKINE CYCLES BASED ON BIOMASS FUELED BOILERS

• JUSTSEN ENERGITEKNIK

- GRIMHOJVEJ 11
- DK-8220 BRABRAND DENMARK
- ATT. LARS JUSTSEN MAIL: LA@JUSTSEN.DK
- MANUFACTURER, A.O. SPECIALIZED IN BIOMASS FUELED BOILERS FOR COMPLETE STEAM RANKINE CYCLES

World Bionergy Association, June 2023 www.justsen.dk